Cortical activation during cooperative joint actions and competition in children with and without an autism spectrum condition (ASC): an fNIRS study

Cortical activation during cooperative joint actions and competition in children with and without an autism spectrum condition (ASC): an fNIRS study


  • Maenner, M. J. et al. Prevalence and characteristics of Autism Spectrum Disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, united states, 2018. MMWR Surveill. Summ. 70(11), 1–16 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn. (American Psychiatric Publishing, 2013).

    Book 

    Google Scholar
     

  • Bhat, A. N. Is motor impairment in autism spectrum disorder distinct from developmental coordination disorder? A report from the SPARK study. Phys. Ther. 100(4), 633–644 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhat, A. N. Motor impairment increases in children with autism spectrum disorder as a function of social communication, cognitive and functional impairment, repetitive behavior severity, and comorbid diagnoses: A SPARK study report. Autism Res. 14(1), 202–219 (2021).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Kaur, M., Srinivasan, S. M. & Bhat, A. N. Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without autism spectrum disorder (ASD). Res. Dev. Disabil. 72, 79–95 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kaur, M., Gifford, T., Marsh, K. & Bhat, A. The effects of robot-child interactions on bilateral coordination skills of typically developing children and one child with autism between 4 to 7 years of age. J. Motor Learn. Dev. 1(2), 31–37 (2013).

    Article 

    Google Scholar
     

  • Freeman, L. M., Lock, J., Rotheram-Fuller, E. & Mandell, D. Brief report: Examining executive and social functioning in elementary aged children with autism. J. Autism Dev. Disord. 47, 1890–1895 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebanz, N., Bekkering, H. & Knoblich, G. Joint action: Bodies and minds moving together. Trends Cogn. Sci. 10(2), 70–76 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Fitzpatrick, P. et al. Social motor synchronization: Insights for understanding social behavior in autism. J. Autism Dev. Disord. 47, 2092–2107 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bolt, N. K. & Loehr, J. D. The motor-related brain activity that supports joint action: A review. Acta Psychol. 212, 103218 (2021).

    Article 

    Google Scholar
     

  • Fairhurst, M. T., Janata, P. & Keller, P. E. Leading the follower: An fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner. Neuroimage 84, 688–697 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chauvigné, L. & Brown, S. Role-specific brain activations in leaders and followers during joint action. Front. Hum. Neurosci. 12, 401 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanzella, P. et al. fNIRS responses in professional violinists while playing duets: Evidence for distinct leader and follower roles at the brain level. Front. Psychol. 10, 164 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vesper, C. et al. Joint action: Mental representations, shared information and general mechanisms for coordinating with others. Front. Psychol. 7, 2039 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, M., Bekkering, H., Haartsen, R., Stapel, J. C. & Hunnius, S. The role of action prediction and inhibitory control for joint action coordination in toddlers. Exp. Child Psychol. 139, 203–220 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Iacoboni, M. Neurobiology of imitation. Curr. Opin. Neurobiol. 19, 661–665 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. & Hofmann, J. Action observation and imitation in autism spectrum disorders: An ALE meta-analysis of fMRI studies. Brain Imaging Behav. 10, 960–969 (2015).

    Article 

    Google Scholar
     

  • Molenberghs, P., Brander, C., Mattingley, J. B. & Cunnington, R. The role of the superior temporal sulcus and the mirror neuron system in imitation. Hum. Brain Mapp. 31(9), 1316–1326 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limanowski, J. & Blankenburg, F. Fronto-parietal brain responses to visuotactile congruence in an anatomical reference frame. Front. Hum. Neurosci. 12, 84 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson-Frey, S. H. et al. Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron 39(6), 1053–1058 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koski, L. et al. Modulation of motor and premotor activity during imitation of target-directed actions. Cereb. Cortex 12(8), 847–855 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Fontana, A. P. et al. Role of the parietal cortex in predicting incoming actions. Neuroimage 59(1), 556–564 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vrticka, P. et al. Neural substrates of social emotional regulation on imitation and expressive suppression to dynamic facial signals. Front. Psychol. 4(95), 1–10 (2013).


    Google Scholar
     

  • Del Casale, A. et al. Executive functions in obsessive-compulsive disorder: An activation likelihood estimate meta-analysis of fMRI studies. World J. Biol. Psychiatry 17(5), 378–393 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bhat, A. N. et al. Cortical activation during action observation, action execution, and interpersonal synchrony in adults: A functional near-infrared spectroscopy (fNIRS) study. Front. Hum. Neurosci. 11, 431 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, W. C. et al. Developmental differences in cortical activation during action observation, action execution, and interpersonal synchrony in adults: An fNIRS study. Front. Hum. Neurosci. 14, 57 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, W. C. et al. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): An fNIRS pilot study. PLoS One 15(10), e0240301 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, W. C., Culotta, M., Tsuzuki, D. & Bhat, A. Movement kinematics and cortical activation in children with and without autism spectrum disorder during sway synchrony tasks: An fNIRS study. Sci. Rep. 11(1), 15035 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huberth, M. et al. Performance monitoring of self and other in a turn-taking piano duet: A dual-EEG study. Soc. Neurosci. 14(4), 449–461 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Foti, D. & Roberts, F. The neural dynamics of speech perception: Dissociable networks for processing linguistic content and monitoring speaker turn-taking. Brain Lang. 157–158, 63–71 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Egetemeir, J., Stenneken, P., Koehler, S., Fallgatter, A. J. & Herrmann, M. J. Exploring the neural basis of real-life joint action: Measuring brain activation during joint table setting with functional near-infrared spectroscopy. Front. Hum. Neurosci. 5, 95 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M., Ahn, H. S., Kwon, S. K. & Kim, S. I. Cooperative and competitive contextual effects on social cognitive and empathic neural responses. Front. Hum. Neurosci. 12, 218 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bratman, M. Shared Agency. A Planning Theory of Acting Together (Oxford University Press, 2014).

    Book 

    Google Scholar
     

  • Murayama, K. & Elliot, A. J. The competition-performance relation: A meta-analytic review and test of the opposing processes model of competition and performance. Psychol. Bull. 138(6), 1035–1070 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Tsoi, L., Dungan, J., Waytz, A. & Young, L. Distinct neural patterns of social cognition for cooperation versus competition. Neuroimage 137, 86–96 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T. & Meltzoff, A. N. The neural bases of cooperation and competition: An fMRI investigation. Neuroimage 23(2), 744–751 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, T., Saito, H. & Oi, M. Role of the right inferior frontal gyrus in turn-based cooperation and competition: A near-infrared spectroscopy study. Brain Cogn. 99, 17–23 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, T., Saito, G., Lin, C. & Saito, H. Inter-brain network underlying turn-based cooperation and competition: A hyperscanning study using near-infrared spectroscopy. Sci. Rep. 7(1), 8684 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brezis, R. S. et al. Patterns of joint improvisation in adults with autism spectrum disorder. Front. Psychol. 8, 1790 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochi, K. et al. Quantification of speech and synchrony in the conversation of adults with autism spectrum disorder. PLoS One 14(12), e0225377 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerullo, S., Fulceri, F., Muratori, F. & Contaldo, A. Acting with shared intentions: A systematic review on joint action coordination in autism spectrum disorder. Brain Cogn. 149, 105693 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Salice, A. & Henriksen, M. G. Disturbances of shared intentionality in schizophrenia and autism. Front. Psychiatry 11, 570597 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uratani, M. et al. Reduced prefrontal hemodynamic response in pediatric autism spectrum disorder measured with near-infrared spectroscopy. Child Adolesc. Psychiatry Ment. Health 13, 29 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todorova, G. K., Hatton, R. & Pollick, F. E. Biological motion perception in autism spectrum disorder: A meta-analysis. Mol. Autism 10, 49 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruppa, J. A. et al. Brain and motor synchrony in children and adolescents with ASD-A fNIRS hyperscanning study. Soc. Cogn. Affect Neurosci. 16(1–2), 103–116 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Leekam, S. R., Lopez, B. & Moore, C. Attention and joint attention in preschool children with autism. Dev. Psychol. 38, 261–273 (2000).

    Article 

    Google Scholar
     

  • Robinson, S., Goddard, L., Dritschel, B., Wisley, M. & Howlin, P. Executive functions in children with autism spectrum disorders. Brain Cogn. 71, 362–368 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Sachse, M. et al. Executive and visuo-motor function in adolescents and adults with autism spectrum disorder. J. Autism Dev. Disord. 43, 1222–1235 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Leekam, S. R. & Ramsden, C. A. Dyadic orienting and joint attention in preschool children with Autism. J. Autism Dev. Disord. 36, 185–197 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Shic, F., Bradshaw, J., Klin, A., Scassellati, B. & Chawarska, K. Limited activity monitoring in toddlers with autism spectrum disorder. Brain Res. 1380, 246–254 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohata, R. et al. Sense of agency beyond sensorimotor process: Decoding self-other action attribution in the human brain. Cereb. Cortex 30(7), 4076–4091 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R. & Vogeley, K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn. 17(2), 457–467 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Guionnet, S. et al. Reciprocal imitation: Toward a neural basis of social interaction. Cereb. Cortex 22(4), 971–978 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Spencer, M. D. et al. Failure to deactivate the default mode network indicates a possible endophenotype of autism. Mol. Autism 3(1), 15 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chien, H. Y., Gau, S. S. & Isaac Tseng, W. Y. Deficient visuospatial working memory functions and neural correlates of the default mode network in adolescents with autism spectrum disorder. Autism Res. 9(10), 1058–1072 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K. & Bishop, S. L. Autism diagnostic observation schedule, second edition (ADOS-2) manual (Part 1): Modules 1–4 (Western Psychological Services, 2012).

  • Daniels, A. M. et al. Verification of parent-report of child autism spectrum disorder diagnosis to a web-based autism registry. J. Autism Dev. Disord. 42(2), 257–265 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Coren, S. Handedness Questionnaire. The Causes and Consequences of Left-Handedness (NY Free Press, 1992).


    Google Scholar
     

  • Volkmar, F. R. et al. Social deficits in autism: An operational approach using the Vineland Adaptive Behavior Scales. J. Am. Acad. Child Adolesc. Psychiatry 26(2), 156–161 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Constantino, J. N. & Gruber, C. P. Social Responsiveness Scale (SRS) (Western Psychological Services, 2005).


    Google Scholar
     

  • Bruininks, R. & Bruininks, B. Bruininks-Oseretsky Test of Motor Proficiency: Examiner’s Manual (Pearson’s Assessments, 2005).


    Google Scholar
     

  • Lloyd-Fox, S., Blasi, A. & Elwell, C. E. Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34, 269–284 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuzuki, D. et al. Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration. Neurosci. Res. 72, 163–171 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Okamoto, M. et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21, 99–111 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Shattuck, D. W. et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39, 1064–1080 (2010).

    Article 

    Google Scholar
     

  • Huppert, T. J., Diamond, S. G., Franceschini, M. A. & Boas, D. A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 48(10), 280–298 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Sutoko, S. et al. Tutorial on platform for optical topography analysis tools. Neurophotonics 3, 010801 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tachtsidis, I. & Scholkmann, F. False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward. Neurophotonics 3(3), 031405 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, A. & Dan, I. Exploring the false discovery rate in multichannel NIRS. Neuroimage 33, 542–549 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Hedges, L. V. Distribution theory for glass’s estimator of effect size and related estimators. J. Educ. Behav. Stat. 6(2), 107–128 (1981).

    Article 

    Google Scholar
     



  • Source link